% | $
Quotes you view appear here for quick access.

Intel Corporation Message Board

  • wallisweaver wallisweaver Dec 10, 2012 7:57 PM Flag

    Intel unveils 22nm SoC transistors, while TSMC and GlobalFoundries plan risky process jumps

    Transistor announcements aren’t the sexiest occasions on the block, but Intel’s 22nm SoC unveil is important for a host of reasons. As process nodes shrink and more components move on-die, the characteristics of each new node have become particularly important. 22nm isn’t a new node for Intel; it debuted the technology last year with Ivy Bridge, but SoCs are more complex than CPU designs and create their own set of challenges.

    Like its 22nm Ivy Bridge CPUs, the upcoming 22nm SoCs rely on Intel’s Tri-Gate implementation of FinFET technology. According to Intel engineer Mark Bohr, the 3D transistor structure is the principle reason why the company’s 22nm technology is as strong as it is. Other evidence backs up this point. Earlier this year, we brought you news that Nvidia was deeply concerned about manufacturing economics and the relative strength of TSMC’s sub-28nm planar roadmap. Morris Chang, TSMC’s CEO, has since admitted that such concerns are valid, given that performance and power are only expected to increase by 20-25% as compared to 28nm.

    Intel, in contrast, is predicting record gains. The company claims that its 28nm SoC “employs high speed logic transistors, low standby power transistors, and high-voltage tolerant transistors in a single SoC chip to support a wide range of products, including premium smart phones, tablets, netbooks, embedded systems, wireless communications, and ASIC products.” The company reports enormous improvements in leakage currents and Intel plans to take full advantage of the improved performance.

    Sentiment: Strong Buy

    SortNewest  |  Oldest  |  Most Replied Expand all replies
    • The challenge for both TSMC and GlobalFoundries is going to be how to match the performance of Intel’s 22nm technology with their own 28nm products. 20nm looks like it won’t be able to do so, which is why both companies are emphasizing their plans to move to 16nm/14nm ahead of schedule. There’s some variation on which node comes next; both GlobalFoundries and Intel are talking up 14nm; TSMC is implying a quick jump to 16nm.

      I don’t want to say too much on how the three companies’ future processes might compare; tech papers at IEDM may shed more light on the particulars of each solution. What’s clear is that both GF and TSMC are going to try to accelerate FinFET development. GF’s tech papers imply that the company will deploy a hybrid 22nm-14nm process to make the jump more quickly.

      Sentiment: Strong Buy

      • 1 Reply to wallisweaver
      • Will it work? Unknown. TSMC and GlobalFoundries both have excellent engineers, but FinFET is a difficult technology to deploy. Ramping it up more quickly than expected while simultaneously bringing up a new process may be more difficult than either company anticipates. Given the advantages Intel claims for the technology, it might’ve made more sense to ramp FinFET on an established node. One of the most significant demonstrations of what Intel thinks it’s getting out of 22nm FinFET is the company’s decision to revise Atom for an out-of-order architecture. Intel has resisted the call to overhaul the in-order CPU; the current core at the heart of Medfield and Clover Trail offers nearly identical performance to the design that debuted in 2008.

        22nm Atom should close the gap with existing ARM CPUs and give Intel a substantial advantage. Overall, the situation looks like Intel holds the cards until GF and TSMC manage to revise their roadmaps for the sub-20nm market.

        Sentiment: Strong Buy

29.90+0.05(+0.17%)May 5 4:00 PMEDT