Thu, Dec 18, 2014, 4:48 PM EST - U.S. Markets closed

Recent

% | $
Quotes you view appear here for quick access.

Prana Biotechnology Limited Message Board

dogslifebowwow 5 posts  |  Last Activity: Dec 10, 2014 2:52 PM Member since: Feb 12, 2002
SortNewest  |  Oldest  |  Highest Rated Expand all messages
  • dogslifebowwow dogslifebowwow Dec 10, 2014 2:52 PM Flag

    This was a major news item in Science Daily

  • team, led by Oxford University scientists, took techniques normally used to analyse trace metal isotopes for studying climate change and planetary formation and applied them to how the human body processes metals.
    Related Articles
    Breast cancer
    Mammography
    Breast reconstruction
    Breast implant
    BRCA1
    Colorectal cancer
    In a world-first the researchers were able to show that changes in the isotopic composition of zinc, which can be detected in a person's breast tissue, could make it possible to identify a 'biomarker' (a measurable indicator) of early breast cancer.
    A report of the research by the Oxford University-led team, which included researchers from Imperial College London and the Natural History Museum, London, is published in the Royal Society of Chemistry journal Metallomics.
    The pilot study analysed zinc in the blood and blood serum of ten subjects (five breast cancer patients and five healthy controls) alongside a range of breast tissue samples from breast cancer patients. By using techniques that are over 100 times more sensitive to changes in the isotopic composition of metals than anything currently used by clinicians, the researchers were able to show that they could detect key differences in zinc caused when cancer subtly alters the way that cells process the metal. Similar changes in copper in one of the breast cancer patients is additional evidence that it may be possible to identify a biomarker for early breast cancer that could form the basis of a simple, non-invasive, diagnostic blood test.
    'It has been known for over a decade that breast cancer tissues contain high concentrations of zinc but the exact molecular mechanisms that might cause this have remained a mystery,' said Dr Fiona Larner of Oxford University's Department of Earth Sciences, who led the research. 'Our work shows that techniques commonly used in earth sciences can help us to understand not only how zinc is used by tumour cells but also how breast cancer can lead to changes in zinc in an individual's blood -- holding out the promise of an easily-detectable biomarker of early breast cancer.'
    The researchers say that this new understanding of cancer cell behaviour -- in particular the role sulfur-containing proteins play in how tumours process zinc -- could also help in the development of new cancer treatments.
    'The hope is that this research is the beginning of a whole new approach,' said Dr Larner. 'Understanding how different cancers alter different trace metals within the body could enable us to develop both new diagnostic tools and new treatments that could lead to a 'two-pronged' attack on many cancers. Further research is already underway to see what changes in other metals may be caused by other cancers.'
    A report of the research, entitled 'Zinc isotopic compositions of breast cancer tissue', is published in the journal Metallomics.

  • Reply to

    Copper on the brain at rest

    by dogslifebowwow Nov 28, 2014 10:55 PM
    dogslifebowwow dogslifebowwow Nov 29, 2014 9:04 AM Flag

    Thanks , yes I am still a believer in Pran /PBT .

  • Reply to

    Copper on the brain at rest

    by dogslifebowwow Nov 28, 2014 10:55 PM
    dogslifebowwow dogslifebowwow Nov 28, 2014 10:57 PM Flag

    Journal Reference:
    Sheel C. Dodani, Alana Firl, Jefferson Chan, Christine I. Nam, Allegra T. Aron, Carl S. Onak, Karla M. Ramos-Torres, Jaeho Paek, Corey M. Webster, Marla B. Feller, Christopher J. Chang. Copper is an endogenous modulator of neural circuit spontaneous activity. Proceedings of the National Academy of Sciences, 2014; 111 (46): 16280 DOI: 10.1073/pnas.1409796111

  • dogslifebowwow by dogslifebowwow Nov 28, 2014 10:55 PM Flag

    In recent years it has been established that copper plays an essential role in the health of the human brain. Improper copper oxidation has been linked to several neurological disorders including Alzheimer's, Parkinson's, Menkes' and Wilson's. Copper has also been identified as a critical ingredient in the enzymes that activate the brain's neurotransmitters in response to stimuli. Now a new study by researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) has shown that proper copper levels are also essential to the health of the brain at rest.
    Related Articles
    Brain damage
    Human brain
    Thalamus
    Functional neuroimaging
    Traumatic brain injury
    Psychedelic drug
    "Using new molecular imaging techniques, we've identified copper as a dynamic modulator of spontaneous activity of developing neural circuits, which is the baseline activity of neurons without active stimuli, kind of like when you sleep or daydream, that allows circuits to rest and adapt," says Chris Chang, a faculty chemist with Berkeley Lab's Chemical Sciences Division who led this study. "Traditionally, copper has been regarded as a static metabolic cofactor that must be buried within enzymes to protect against the generation of reactive oxygen species and subsequent free radical damage. We've shown that dynamic and loosely bound pools of copper can also modulate neural activity and are essential for the normal development of synapses and circuits."
    Chang , who also holds appointments with the University of California (UC) Berkeley's Chemistry Department and the Howard Hughes Medical Institute (HHMI), is the corresponding author of a paper that describes this study in the Proceedings of the National Academy of Sciences (PNAS). The paper is titled "Copper is an endogenous modulator of neural circuit spontaneous activity." Co-authors are Sheel Dodani, Alana Firl, Jefferson Chan, Christine Nam, Allegra Aron, Carl Onak, Karla Ramos-Torres, Jaeho Paek, Corey Webster and Marla Feller.
    Although the human brain accounts for only two-percent of total body mass, it consumes 20-percent of the oxygen taken in through respiration. This high demand for oxygen and oxidative metabolism has resulted in the brain harboring the body's highest levels of copper, as well as iron and zinc. Over the past few years, Chang and his research group at UC Berkeley have developed a series of fluorescent probes for molecular imaging of copper in the brain.
    "A lack of methods for monitoring dynamic changes in copper in whole living organisms has made it difficult to determine the complex relationships between copper status and various stages of health and disease," Chang said. "We've been designing fluorescent probes that can map the movement of copper in live cells, tissue or even model organisms, such as mice and zebra fish."
    For this latest study, Chang and his group developed a fluorescent probe called Copper Fluor-3 (CF3) that can be used for one- and two-photon imaging of copper ions. This new probe allowed them to explore the potential contributions to cell signaling of loosely bound forms of copper in hippocampal neurons and retinal tissue.
    "CF3 is a more hydrophilic probe compared to others we have made, so it gives more even staining and is suitable for both cells and tissue," Chang says. "It allows us to utilize both confocal and two-photon imaging methods when we use it along with a matching control dye (Ctrl-CF3) that lacks sensitivity to copper."
    With the combination of CF3 and Ctrl-CF3, Chang and his group showed that neurons and neural tissue maintain stores of loosely bound copper that can be attenuated by chelation to create what is called a "labile copper pool." Targeted disruption of these labile copper pools by acute chelation or genetic knockdown of the copper ion channel known as CTR1 (for copper transporter 1) alters spontaneous neural activity in developing hippocampal and retinal circuits.
    "We demonstrated that the addition of the copper chelator bathocuproine disulfonate (BCS) modulates copper signaling which translates into modulation of neural activity," Chang says. "Acute copper chelation as a result of additional BCS in dissociated hippocampal cultures and intact developing retinal tissue removed the copper which resulted in too much spontaneous activity."
    The results of this study suggest that the mismanagement of copper in the brain that has been linked to Wilson's, Alzheimer's and other neurological disorders can also contribute to misregulation of signaling in cell−to-cell communications.
    "Our results hold therapeutic implications in that whether a patient needs copper supplements or copper chelators depends on how much copper is present and where in the brain it is located," Chang says. "These findings also highlight the continuing need to develop molecular imaging probes as pilot screening tools to help uncover unique and unexplored metal biology in living systems."
    Story Source:
    The above story is based on materials provided by DOE/Lawrence Berkeley National Laboratory. The original article was written by Lynn Yarris. Note: Materials may be edited for content and length.

PRAN
1.90-0.03(-1.55%)4:00 PMEST

Trending Tickers

i
Trending Tickers features significant U.S. stocks showing the most dramatic increase in user interest in Yahoo Finance in the previous hour over historic norms. The list is limited to those equities which trade at least 100,000 shares on an average day and have a market cap of more than $300 million.