% | $
Quotes you view appear here for quick access.

Samson Oil & Gas Limited Message Board

lfyoung59 9 posts  |  Last Activity: Apr 23, 2015 9:02 PM Member since: Apr 20, 2011
SortNewest  |  Oldest  |  Highest Rated Expand all messages
  • lfyoung59 lfyoung59 Apr 23, 2015 9:02 PM Flag

    Hey bing, I haven't been around much lately, but where'd that sweet disposition of yours go? ;0) If your having fun with all this, so be it. Life is too short for the petty things. You were fun to debate with back aways in time. Well anyway, peace on ya. Later......iffy

  • lfyoung59 by lfyoung59 Mar 30, 2015 12:31 PM Flag

    If it's not a typo. ;0) Congrats to those up with this spike!!!

  • Reply to

    Been Away Awhile

    by lfyoung59 Mar 26, 2015 8:07 PM
    lfyoung59 lfyoung59 Mar 27, 2015 9:57 PM Flag

    jdsstevens55, been in this for quite a spell now. I'll play my hand out I believe. I don't fear JL's intentions as much as some here. If I were to #$%$ about anything it would be directed at Eisai's lack of commitment in selling Belviq.

  • Reply to

    Been Away Awhile

    by lfyoung59 Mar 26, 2015 8:07 PM
    lfyoung59 lfyoung59 Mar 27, 2015 9:42 PM Flag

    Thanks Sharon. Never really left, but have had some pressing health issues in the family, that put posting here on the back burner. I'll be around though!

  • lfyoung59 by lfyoung59 Mar 26, 2015 8:07 PM Flag

    Not much has changed, except this Board. And not for the better in my opinion.
    I know, who gives a rat's bum.
    I'm still here for the long haul. And as I told Sharon some time ago, "I'll see you at the top." And that still holds for me!
    Now someone please send some spring weather up north here too Maine! ;0)

  • Reply to


    by trollen32 Feb 15, 2015 9:44 AM
    lfyoung59 lfyoung59 Mar 18, 2015 10:38 AM Flag

    tro, I got your e-mail. Will get a response off a little later.

  • Reply to


    by trollen32 Feb 15, 2015 9:44 AM
    lfyoung59 lfyoung59 Mar 17, 2015 6:56 PM Flag

    Hey tro, sorry haven't been on here in a while. As fate would have, my wife is in a bad way. If you get a chance shoot me an e-mail. My "smart" phone had a meltdown and lost a bunch of addresses, including yours.

  • lfyoung59 lfyoung59 Feb 13, 2015 12:34 PM Flag

    trade4, if you copy and paste a long article just don't try to type anything with it, will generally get thru. GL

  • Compulsive overeating and sugar addiction are major threats to human health, but potential treatments face the risk of impairing normal feeding behaviors that are crucial for survival. A study published January 29th in the journal Cell reveals a reward-related neural circuit that specifically controls compulsive sugar consumption in mice without preventing feeding necessary for survival, providing a novel target for the safe and effective treatment of compulsive overeating in humans.
    Related Articles
    Drug addiction
    Obsessive-compulsive personality disorder
    Eating disorder
    "Although obesity and Type 2 diabetes are major problems in our society, many treatments do not tackle the primary cause: unhealthy eating habits," says senior study author Kay Tye of the Massachusetts Institute of Technology. "Our findings are exciting because they raise the possibility that we could develop a treatment that selectively curbs compulsive overeating without altering healthy eating behavior."
    Compulsive overeating is a type of reward-seeking behavior, similar to drug addiction. But the major difference between the two behaviors is that eating is required for survival, underscoring the need to tease apart brain circuits involved in compulsive overeating versus normal feeding to develop safe and effective therapies. Tye and her team suspected that a neural pathway from the lateral hypothalamus to the ventral tegmental area might play an important role in compulsive overeating because these brain regions have been implicated in reward-related behaviors such as eating, sexual activity, and drug addiction.
    To test this idea, Tye and her team used a technique called optogenetics, which involves genetically modifying specific populations of neurons to express light-sensitive proteins that control neural excitability, and then delivering either blue or yellow light through an optic fiber to activate or inhibit those cells, respectively. Activation of the pathway from the lateral hypothalamus to the ventral tegmental area caused well-fed mice to spend more time feeding and increased the number of times mice poked their nose into a port to receive a sugar reward, even when they had to cross a platform that delivered foot shocks to get to the reward. By contrast, inhibition of the same pathway reduced this compulsive sugar-seeking behavior without decreasing food consumption in hungry mice, suggesting that different neural circuits control feeding in hungry animals.
    In an independent study also published January 29th in Cell, Garret Stuber of the University of North Carolina School of Medicine and his team similarly used an optogenetic approach in mice to identify neurons in the lateral hypothalamus that control both feeding and reward-seeking behavior. By imaging the activity of hundreds of individual lateral hypothalamus neurons as the mice freely explored an area with food or worked to obtain a sweet reward, they further uncovered distinct subsets of neurons that either mediate food-seeking behavior or respond to reward consumption.
    According to Tye, it makes sense that brain circuits evolved to support binging on scarce, sugary foods whenever these valuable sources of energy become transiently available during certain seasons. But in the winter, it might be adaptive for separate neural circuits to drive hungry animals to eat whatever type of food is available but to consume less overall to ration out limited resources.
    "However, in our modern day society, there is no scarcity of palatable foods, and high-sugar or high-fat foods are often even more available than fresh produce or proteins," Tye says. "We have not yet adapted to a world where there is an overabundance of sugar, so these circuits that drive us to stuff ourselves with sweets are now serving to create a new health problem. The discovery of a specific neural circuit underlying compulsive sugar consumption could pave the way for the development of targeted drug therapies to effectively treat this widespread problem."

    Sentiment: Strong Buy

1.5799-0.0001(-0.01%)Apr 27 4:00 PMEDT